The Power BI semantic data models can be connected via Excel, Power BI Desktop, or Python connector scripts. By using a Python script, the data can be imported directly and analyzed with Python using Pandas or other libraries.
Required information
%run PowerBIDataConnector.ipynb
from IPython.display import display
dmc = DataModelCollector(dataset_id='39d72aa7-5e35-4dd1-bd28-9f5903a75881',
login='sebastien.hsu@esprit.com',
password='Sebtimes11'
)
dmc.create_connection()
dmc.get_all_tables()
print(dmc.df_table)
query_str = '''
DEFINE
VAR __DS0Core =
SUMMARIZECOLUMNS(
'BDSM_DataSource'[SSN],
'BDSM_DataSource'[Style_Code],
'BDSM_DataSource'[Prod_Cluster_Name],
'BDSM_DataSource'[IRPCalY],
'BDSM_DataSource'[Prod_Gender],
'Country Group'[Country Group],
'BDSM_DataSource'[CustomerDestination],
"SumEES_PUR_PCS", CALCULATE(SUM('BDSM_DataSource'[EES_PUR_PCS]))
)
VAR __DS0PrimaryWindowed =
TOPN(
501,
__DS0Core,
'BDSM_DataSource'[SSN],
1,
'BDSM_DataSource'[Style_Code],
1,
'BDSM_DataSource'[Prod_Cluster_Name],
1,
'BDSM_DataSource'[IRPCalY],
1,
'BDSM_DataSource'[Prod_Gender],
1,
'Country Group'[Country Group],
1,
'BDSM_DataSource'[CustomerDestination],
1
)
EVALUATE
__DS0PrimaryWindowed
ORDER BY
'BDSM_DataSource'[SSN],
'BDSM_DataSource'[Style_Code],
'BDSM_DataSource'[Prod_Cluster_Name],
'BDSM_DataSource'[IRPCalY],
'BDSM_DataSource'[Prod_Gender],
'Country Group'[Country Group],
'BDSM_DataSource'[CustomerDestination]
'''
DataFrame Example (This is how Data Frame looks like when imported in JupyterNote book)
Connector Script